We present a novel Deep Neural Network (DNN) architecture for non-linear system identification. We foster generalization by constraining DNN representational power. To do so, inspired by fading memory systems, we introduce inductive bias (on the architecture) and regularization (on the loss function). This architecture allows for automatic complexity selection based solely on available data, in this way the number of hyper-parameters that must be chosen by the user is reduced. Exploiting the highly parallelizable DNN framework (based on Stochastic optimization methods) we successfully apply our method to large scale datasets.
翻译:我们提出了一个用于非线性系统识别的新型深神经网络(DNN)架构。 我们通过限制 DNN 代表力来推动总体化。 为此,在记忆系统衰落的启发下,我们引入了感应偏差(结构)和规范化(损失功能 ) 。 这个架构允许完全根据现有数据自动选择复杂程度, 从而减少用户必须选择的超参数数量。 利用高度平行的 DNN 框架( 以斯托切斯优化方法为基础) 我们成功地将我们的方法应用于大型数据集 。