Importance sampling is a widely used technique to estimate properties of a distribution. This paper investigates trading-off some bias for variance by adaptively winsorizing the importance sampling estimator. The novel winsorizing procedure, based on the Balancing Principle (or Lepskii's Method), chooses a threshold level among a pre-defined set by roughly balancing the bias and variance of the estimator when winsorized at different levels. As a consequence, it provides a principled way to perform winsorization with finite-sample optimality guarantees under minimal assumptions. In various examples, the proposed estimator is shown to have smaller mean squared error and mean absolute deviation than leading alternatives.
翻译:重要性取样是一种广泛使用的估算分布特性的技术。 本文通过以适应性方式赢得重要抽样估量器来调查某些偏差的权衡偏差。 基于平衡原则( 或Lepskii方法)的新颖的重置程序在预先界定的门槛值中选择一个门槛值,通过在不同级别赢取时对估计值的偏差和差异进行权衡。 因此,它提供了一种原则性方法,在最低假设条件下,以有限和最优化的保证方式进行赢利化。 在各种例子中,拟议的估计值显示比主要替代物的最小平均正方差和绝对偏差。