We develop a novel, general framework for reduced-bias $M$-estimation from asymptotically unbiased estimating functions. The framework relies on an empirical approximation of the bias by a function of derivatives of estimating function contributions. Reduced-bias $M$-estimation operates either implicitly, by solving empirically adjusted estimating equations, or explicitly, by subtracting the estimated bias from the original $M$-estimates, and applies to models that are partially- or fully-specified, with either likelihoods or other surrogate objectives. Automatic differentiation can be used to abstract away the only algebra required to implement reduced-bias $M$-estimation. As a result, the bias reduction methods we introduce have markedly broader applicability and more straightforward implementation than other established bias-reduction methods that require resampling or evaluation of expectations of products of log-likelihood derivatives. If $M$-estimation is by maximizing an objective, then there always exists a bias-reducing penalized objective. That penalized objective relates closely to information criteria for model selection, and can be further enhanced with plug-in penalties to deliver reduced-bias $M$-estimates with extra properties, like finiteness in models for categorical data. The reduced-bias $M$-estimators have the same asymptotic distribution as the original $M$-estimators, and, hence, standard procedures for inference and model selection apply unaltered with the improved estimates. We demonstrate and assess the properties of reduced-bias $M$-estimation in well-used, prominent modelling settings of varying complexity.


翻译:我们为低比值的低比值制定了一个新的总体框架,用于从无偏倚的估算函数中估算美元; 该框架依赖于通过估算函数贡献的衍生物函数对偏差进行实验性近似。 降低比值的估算或隐含地运作,解决经经验调整的估算方程,或明确地,减去原美元估算值的估计偏差,并适用于部分或全部指定的模型,既有可能性,也有其他替代目标。 自动区分可用于抽取执行降低比值的计算值所需的唯一代数。 因此,我们采用的减少偏差方法比其他既定的减少偏差方法具有明显更广泛的适用性和更直接的实施性,这些方法需要重新确定或评估对日志相似衍生物产品的预期值。 如果美元估算值是通过实现一个目标最大化,则始终存在一个减少偏差的明显目标。 这一目标与选择模型的信息标准标准标准标准标准标准标准标准值密切相关,并且可以进一步加以加强,例如对降低比值的模型和降低比值标准值标准值的美元,我们采用的减少比值- 降低比值的比值- 降低比值- 降低比值的比值的比值- 数据的比值- 降低比值- 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
242+阅读 · 2020年4月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
273+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Dimension-Free Empirical Entropy Estimation
Arxiv
0+阅读 · 2021年5月27日
Arxiv
0+阅读 · 2021年5月26日
Arxiv
14+阅读 · 2020年12月17日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
4+阅读 · 2018年3月14日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
242+阅读 · 2020年4月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
273+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员