A locating-dominating set is a subset of vertices representing "detectors" in a graph G; each detector monitors its closed neighborhood and can distinguish its own location from its neighbors, and given all sensor input, the system can locate an "intruder" anywhere in the graph. We explore a fault-tolerant variant of locating-dominating sets, error-correcting locating-dominating (ERR:LD) sets, which can tolerate an incorrect signal from a single detector. In particular, we characterize error-correcting locating-dominating sets, and derive its existence criteria. We also prove that the problem of determining the minimum cardinality of ERR:LD set in arbitrary graphs is NP-complete. Additionally, we establish lower and upper bounds for the minimum density of ERR:LD sets in infinite grids and cubic graphs, and prove the lower bound for cubic graphs is sharp.
翻译:定位偏差集是图G中代表“ 检测器” 的顶端子集; 每个检测器监测其封闭的邻里,能够区分其封闭的位置,并且能够将其位置与邻居区分开来,并且考虑到所有传感器输入的情况,该系统可以在图中任何地方找到“ 入侵者 ” 。 我们探索定位偏差、 错误校正定位偏差的一组( ERR: LD), 它可以容忍单个检测器发出的错误信号。 特别是, 我们给错误校正定位偏差组定性, 并得出其存在标准 。 我们还证明, 确定任意图形中 ERR: LD 设定的最低基点存在问题是 NP 完全 。 此外, 我们为 ERR: LD 最小密度在无限的网格和立方图中设置的下限, 并证明 立方图的下界是锐利的 。