Reflection high-energy electron diffraction (RHEED) is a powerful tool in molecular beam epitaxy (MBE), but RHEED images are often difficult to interpret, requiring experienced operators. We present an approach for automated surveillance of GaAs substrate deoxidation in MBE reactors using deep learning based RHEED image-sequence classification. Our approach consists of an non-supervised auto-encoder (AE) for feature extraction, combined with a supervised convolutional classifier network. We demonstrate that our lightweight network model can accurately identify the exact deoxidation moment. Furthermore we show that the approach is very robust and allows accurate deoxidation detection during months without requiring re-training. The main advantage of the approach is that it can be applied to raw RHEED images without requiring further information such as the rotation angle, temperature, etc.
翻译:反射高能电子分解(RHEED)是分子波束显性(MBE)的有力工具,但RHEED图像往往难以解释,需要有经验的操作员。我们提出了一个方法,用于利用基于深层次学习的 RHEED 图像序列分类对MBE反应堆的GAAs 基脱氧化进行自动监测。我们的方法包括一个非监督的地貌提取自动编码器(AE),加上一个受监督的脉冲分解器网络。我们证明我们的轻量网络模型可以准确识别确切的脱氧时间。此外,我们表明该方法非常稳健,可以在不需再培训的情况下在数月内进行准确的脱氧检测。这种方法的主要优点是,它可以适用于原始的RHEEED图像,而不需要诸如旋转角度、温度等进一步的信息。