Extending the work of Alon, Frieze abnd Welsh, we show that there are randomized polynomial time approximation schemes for computing the Tutte polynomial in subdense graphs with an minimal node degree of $\Omega\left ( \frac{n}{\sqrt{\log n}}\right )$ . The same holds for the partition function $Z$ in the random cluster model with uniform edge probabilities and for the associated distribution $\lambda (A),\: A \subseteq E$ whenever the underlying graph $G=(V,E)$ is $c\cdot\frac{n}{\sqrt{\log (n)}}$-subdense. In the superdense case with node degrees $n-o(n)$, we show that the Tutte polynomial $T_G(x,y)$ is asymptotically equal to $Q=(x-1)(y-1)$. Moreover, we briefly discuss the problem of approximating $Z$ in the case of $(\alpha, \beta )$-power law graphs.
翻译:扩展 Aron, Frieze abnd Welsh 的工作时,我们显示,在子登子图中,有随机的多元时间近似方案,用于计算图特多元时间近似,最低节点为$(Omega\left) (\ frac{n\ sqrt\log n ⁇ right)$。对于具有统一边缘概率的随机集聚模型中分区函数Z$(美元)和相关的分配值$\lambda(A),\:当基本图形$=(V,E)为$(c\ct\fra{n\sqrt\n>$(n)\\\\ sqrt_subdense) 时,我们也有同样的搁置。在具有n-o(n) $(n) $(x,y) 美元(x) 美元(y) 。此外,我们简要讨论了美元(x\pha) 图表中相对Z$(Z$) 能力的问题。