To understand neural network behavior, recent works quantitatively compare different networks' learned representations using canonical correlation analysis (CCA), centered kernel alignment (CKA), and other dissimilarity measures. Unfortunately, these widely used measures often disagree on fundamental observations, such as whether deep networks differing only in random initialization learn similar representations. These disagreements raise the question: which, if any, of these dissimilarity measures should we believe? We provide a framework to ground this question through a concrete test: measures should have sensitivity to changes that affect functional behavior, and specificity against changes that do not. We quantify this through a variety of functional behaviors including probing accuracy and robustness to distribution shift, and examine changes such as varying random initialization and deleting principal components. We find that current metrics exhibit different weaknesses, note that a classical baseline performs surprisingly well, and highlight settings where all metrics appear to fail, thus providing a challenge set for further improvement.
翻译:为了理解神经网络行为,最近的工作在数量上比较了不同网络的学术表现,使用了直觉关联分析(CCA),核心内核对齐(CKA)和其他差异性措施。不幸的是,这些广泛使用的措施往往在基本观察上存在分歧,例如深网络是否只在随机初始化方面有不同之处,这些分歧提出了类似的表述。 这些分歧提出了这样一个问题:如果有的话,这些差异性措施中哪些是我们应该相信的?我们提供了一个框架,通过具体测试来解释这一问题:措施应当对影响功能行为的变化具有敏感性,而具体化则对非功能性的变化具有针对性。我们通过各种功能行为来量化这一点,包括测量分布变化的准确性和稳健性,并审查诸如随机初始化和删除主要组成部分等变化。我们发现,目前的指标显示出不同的弱点,指出典型基线表现得令人惊讶,并突出所有指标似乎都失败的环境,从而提出了进一步改进的挑战。