Batched network coding is a low-complexity network coding solution to feedbackless multi-hop wireless packet network transmission with packet loss. The data to be transmitted is encoded into batches where each of which consists of a few coded packets. Unlike the traditional forwarding strategy, the intermediate network nodes have to perform recoding, which generates recoded packets by network coding operations restricted within the same batch. Adaptive recoding is a technique to adapt the fluctuation of packet loss by optimizing the number of recoded packets per batch to enhance the throughput. The input rank distribution, which is a piece of information regarding the batches arriving at the node, is required to apply adaptive recoding. However, this distribution is not known in advance in practice as the incoming link's channel condition may change from time to time. On the other hand, to fully utilize the potential of adaptive recoding, we need to have a good estimation of this distribution. In other words, we need to guess this distribution from a few samples so that we can apply adaptive recoding as soon as possible. In this paper, we propose a distributionally robust optimization for adaptive recoding with a small-sample inferred prediction of the input rank distribution. We develop an algorithm to efficiently solve this optimization with the support of theoretical guarantees that our optimization's performance would constitute as a confidence lower bound of the optimal throughput with high probability.


翻译:连接网络编码是一种低复杂度的网络编码解决方案, 用于解决无反馈的多霍普无线网络网络传输( 包丢失) 。 将要传输的数据被编码成批量, 每个批次由几个编码包组成。 与传统的转发战略不同, 中间网络节点必须进行重新编码, 通过网络编码操作在同一批次内进行重新编码。 适应性重新编码是一种技术, 通过优化每批次重编码的包数来适应包丢失的波动, 从而增强输送量。 输入级别分布是到达节点的批次信息的一部分, 需要应用适应性重编。 但是, 与传统的转发战略不同, 中间网络节点必须进行重新编码, 中间网络节点与传统的转发战略不同, 中间网络节点节点必须进行重新编码, 通过同一批次的网络编码操作来生成重新编码的重新编码包包包包。 而要充分利用适应性重新编码的潜力, 我们需要很好地估计这种分布方式。 换句话说, 我们需要从几个样本中猜测这种分配方式, 以便我们尽快应用适应性重新编码。 。 在本文中, 我们提出一个可靠的 优化的 优化分配 优化的 优化的排序中, 将一个可靠的 优化的排序中, 发展一个可靠的 将 的 将 的 的 将 发展一个可靠的 的 优化的 的 的 优化的 的 的 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【Google AI】开源NoisyStudent:自监督图像分类
专知会员服务
55+阅读 · 2020年2月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Arxiv
0+阅读 · 2021年8月16日
Arxiv
10+阅读 · 2021年2月18日
Arxiv
8+阅读 · 2018年3月20日
VIP会员
相关资讯
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Top
微信扫码咨询专知VIP会员