We characterize the complete joint posterior distribution over spatially-varying basal traction and and ice softness parameters of an ice sheet model from observations of surface speed by using stochastic variational inference combined with natural gradient descent to find an approximating variational distribution. By placing a Gaussian process prior over the parameters and casting the problem in terms of eigenfunctions of a kernel, we gain substantial control over prior assumptions on parameter smoothness and length scale, while also rendering the inference tractable. In a synthetic example, we find that this method recovers known parameters and accounts for mutual indeterminacy, both of which can influence observed surface speed. In an application to Helheim Glacier in Southeast Greenland, we show that our method scales to glacier-sized problems. We find that posterior uncertainty in regions of slow flow is high regardless of the choice of observational noise model.
翻译:我们用地表速度观测的冰层模型,通过使用随机变异推断,加上自然梯度下降,以找到接近加速的变异分布,将一个冰层模型在空间变化的柱形牵引和冰柔性参数上的完全联合后部分布特征定性为:通过在参数之前设置高斯进程,从内核的叶质功能方面造成问题,我们在很大程度上控制了先前对参数光滑和长度尺度的假设,同时也使推论可以推导。在合成的一个例子中,我们发现这种方法恢复了已知参数,并说明了相互的不确定性,两者都能够影响观测到的表面速度。在对格陵兰东南部海尔海姆冰川的应用中,我们显示,我们的方法尺度与冰川大小问题有关。我们发现,无论观察噪音模型的选择如何,在慢流区域,后部的不确定性都很高。