We propose a very fast approximate Markov Chain Monte Carlo (MCMC) sampling framework that is applicable to a large class of sparse Bayesian inference problems, where the computational cost per iteration in several models is of order $O(ns)$, where $n$ is the sample size, and $s$ the underlying sparsity of the model. This cost can be further reduced by data sub-sampling when stochastic gradient Langevin dynamics are employed. The algorithm is an extension of the asynchronous Gibbs sampler of Johnson et al. (2013), but can be viewed from a statistical perspective as a form of Bayesian iterated sure independent screening (Fan et al. (2009)). We show that in high-dimensional linear regression problems, the Markov chain generated by the proposed algorithm admits an invariant distribution that recovers correctly the main signal with high probability under some statistical assumptions. Furthermore we show that its mixing time is at most linear in the number of regressors. We illustrate the algorithm with several models.


翻译:我们提出了一个非常快速的Markov链条蒙特卡洛(MCMCC)抽样框架,适用于大量稀疏的贝叶斯人的推论问题,即若干模型中的每迭代计算成本按正值$(ns)美元计算,其中以美元为样本规模,以美元为基底的宽度为美元。当采用随机梯度梯度兰格文动态时,可以通过数据子抽样进一步降低这一成本。算法是Johnson等人(2013年)的非同步吉布斯采样器的延伸,但可以从统计角度看成是Bayesian反复反复独立筛选的一种形式(Fan等人(2009年) )。我们显示,在高维线性线性回归问题中,拟议算法产生的Markov链在一些统计假设中接受一种不变化分布,在极有可能情况下正确恢复主要信号。此外,我们显示其混合时间在递归者数量中最多为线性。我们用几种模型来说明算法。

0
下载
关闭预览

相关内容

贝叶斯推断(BAYESIAN INFERENCE)是一种应用于不确定性条件下的决策的统计方法。贝叶斯推断的显著特征是,为了得到一个统计结论能够利用先验信息和样本信息。
因果推断,Causal Inference:The Mixtape
专知会员服务
103+阅读 · 2021年8月27日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
自动结构变分推理,Automatic structured variational inference
专知会员服务
38+阅读 · 2020年2月10日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
浅谈贝叶斯和MCMC
AI100
14+阅读 · 2018年6月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
0+阅读 · 2021年10月11日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关VIP内容
因果推断,Causal Inference:The Mixtape
专知会员服务
103+阅读 · 2021年8月27日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
自动结构变分推理,Automatic structured variational inference
专知会员服务
38+阅读 · 2020年2月10日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
浅谈贝叶斯和MCMC
AI100
14+阅读 · 2018年6月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员