The behavior of a generalized random environment integer-valued autoregressive model of higher order with geometric marginal distribution {and negative binomial thinning operator} (abbrev. $RrNGINAR(\mathcal{M,A,P})$) is dictated by a realization $\{z_n\}_{n=1}^\infty$ of an auxiliary Markov chain called random environment process. Element $z_n$ represents a state of the environment in moment $n\in\mathbb{N}$ and determines three different parameters of the model in that moment. In order to use $RrNGINAR(\mathcal{M,A,P})$ model, one first needs to estimate $\{z_n\}_{n=1}^\infty$, which was so far done by K-means data clustering. We argue that this approach ignores some information and performs poorly in certain situations. We propose a new method for estimating $\{z_n\}_{n=1}^\infty$, which includes the data transformation preceding the clustering, in order to reduce the information loss. To confirm its efficiency, we compare this new approach with the usual one when applied on the simulated and the real-life data, and notice all the benefits obtained from our method.
翻译:普通随机环境整值自动递减模式, 以几何边缘分布 {和负二进制减瘦运算机} (abrev. $RrNGINAR (\ mathcal{M,A,P}}) 来决定高排序, 普通随机环境整值自动递减模式的行为。 元素 $z_ n =1 infty$ 是一个叫做随机环境过程的辅助 Markov 链的实现 。 元素 $z_ n =1 infty$ 代表当时的环境状态 $n\ in\ mathb{N} 美元, 并确定了该模型的三个不同参数 。 为了使用 $RrNGINAR (mathcal{M,A,P}) 模式, 首先需要估算 $z_ n ⁇ n=1 infty$, 美元, 由 K- point pointal 数据组合完成。 我们认为, 这个方法忽略了某些信息, 在某些情况下表现不佳。 我们提出了一个新的方法, 我们建议一种估算 $z_n=1\\ intyfty, 包括组合之前的数据转换, 为了减少信息损失, 和所有数据。