We consider a dynamical system with two sources of uncertainties: (1) parameterized input with a known probability distribution and (2) stochastic input-to-response (ItR) function with heteroscedastic randomness. Our purpose is to efficiently quantify the extreme response probability when the ItR function is expensive to evaluate. The problem setup arises often in physics and engineering problems, with randomness in ItR coming from either intrinsic uncertainties (say, as a solution to a stochastic equation) or additional (critical) uncertainties that are not incorporated in the input parameter space. To reduce the required sampling numbers, we develop a sequential Bayesian experimental design method leveraging the variational heteroscedastic Gaussian process regression (VHGPR) to account for the stochastic ItR, along with a new criterion to select the next-best samples sequentially. The validity of our new method is first tested in two synthetic problems with the stochastic ItR functions defined artificially. Finally, we demonstrate the application of our method to an engineering problem of estimating the extreme ship motion probability in ensemble of wave groups, where the uncertainty in ItR naturally originates from the uncertain initial condition of ship motion in each wave group.
翻译:我们考虑的是具有两种不确定性来源的动态系统:(1) 参数化输入,已知概率分布为已知的概率分布;(2) 随机随机的随机性,我们考虑的是具有两种不确定性的动态系统。我们的目的是在ITR函数评估费用昂贵时,有效地量化极端反应概率。问题设置经常出现在物理和工程问题中,ITR的随机性来自内在不确定性(例如,作为随机等式的解决方案)或输入参数空间中未包含的额外(关键)不确定性。为减少所需的抽样数字,我们开发了一种连续的Bayesian实验设计方法,利用不同偏差的热量高斯弧进程回归(VHGPR)来计算随机性 itR 函数的极端反应概率,同时采用新的标准来按顺序选择下一个最佳样本。我们新方法的有效性首先在两个合成问题中测试,这两个合成的问题由人工定义的Stochacistic ITR函数。最后,我们展示了我们的方法在估算波组共振动中的极端船舶运动概率的工程问题方面的应用。