This work proposes a novel tensor train random projection (TTRP) method for dimension reduction, where pairwise distances can be approximately preserved. Our TTRP is systematically constructed through a tensor train (TT) representation with TT-ranks equal to one. Based on the tensor train format, this new random projection method can speed up the dimension reduction procedure for high-dimensional datasets and requires less storage costs with little loss in accuracy, compared with existing methods. We provide a theoretical analysis of the bias and the variance of TTRP, which shows that this approach is an expected isometric projection with bounded variance, and we show that the Rademacher distribution is an optimal choice for generating the corresponding TT-cores. Detailed numerical experiments with synthetic datasets and the MNIST dataset are conducted to demonstrate the efficiency of TTRP.
翻译:这项工作提出了一种新型的慢速列车随机投影法(TTRP)用于降低尺寸,这样可以大致保持对称距离。我们的TTRP是通过一个高压列列(TT)代表系统构建的,TT-级别等于1。根据高压列车格式,这种新的随机投影法可以加快高维数据集的尺寸降幅程序,要求比现有方法更低的存储成本,但准确性不差。我们对TTRP的偏差和差异进行理论分析,表明这一方法是预期的有界限差异的等量投影,我们表明Rademacher的分布是生成相应的TT-核心的最佳选择。对合成数据集和MNIST数据集进行详细的数字实验,以证明TRP的效率。