We propose a generalization of the Wasserstein distance of order 1 to the quantum states of $n$ qudits. The proposal recovers the Hamming distance for the vectors of the canonical basis, and more generally the classical Wasserstein distance for quantum states diagonal in the canonical basis. The proposed distance is invariant with respect to permutations of the qudits and unitary operations acting on one qudit and is additive with respect to the tensor product. Our main result is a continuity bound for the von Neumann entropy with respect to the proposed distance, which significantly strengthens the best continuity bound with respect to the trace distance. We also propose a generalization of the Lipschitz constant to quantum observables. The notion of quantum Lipschitz constant allows us to compute the proposed distance with a semidefinite program. We prove a quantum version of Marton's transportation inequality and a quantum Gaussian concentration inequality for the spectrum of quantum Lipschitz observables. Moreover, we derive bounds on the contraction coefficients of shallow quantum circuits and of the tensor product of one-qudit quantum channels with respect to the proposed distance. We discuss other possible applications in quantum machine learning, quantum Shannon theory, and quantum many-body systems.
翻译:我们建议将1号订单的瓦西斯坦距离与量子量子量子状态的瓦西斯坦距离普遍化。 该提案恢复了卡通基质矢量的哈姆林距离, 更广义地恢复了卡通基质量子状态的古典瓦西斯坦距离。 提议的距离与量子量子和单体操作的变异性不相容,并且对一个量子产品具有添加性。 我们的主要结果是, von Neumann 连接到拟议的距离, 大大加强了与痕量距离有关的最佳连续性。 我们还建议对利普西茨常量值与量子观测的常数进行普遍化。 量子利普西茨常量子概念允许我们将提议的距离与一个半定型程序相匹配。 我们证明了Marton运输不平等的量子版,以及量子 Lipschitz 可观测的频谱的量子浓度不平等。 此外,我们从较浅量子电路路的收缩系数, 以及高量量子理论中的许多量子系统应用, 我们讨论了可能进行量子研究的量子量子量子的量子系统。