Robots manipulating in changing environments must act on percepts that are late, noisy, or stale. We present U-LAG, a mid-execution goal-retargeting layer that leaves the low-level controller unchanged while re-aiming task goals (pre-contact, contact, post) as new observations arrive. Unlike motion retargeting or generic visual servoing, U-LAG treats in-flight goal re-aiming as a first-class, pluggable module between perception and control. Our main technical contribution is UAR-PF, an uncertainty-aware retargeter that maintains a distribution over object pose under sensing lag and selects goals that maximize expected progress. We instantiate a reproducible Shift x Lag stress test in PyBullet/PandaGym for pick, push, stacking, and peg insertion, where the object undergoes abrupt in-plane shifts while synthetic perception lag is injected during approach. Across 0-10 cm shifts and 0-400 ms lags, UAR-PF and ICP degrade gracefully relative to a no-retarget baseline, achieving higher success with modest end-effector travel and fewer aborts; simple operational safeguards further improve stability. Contributions: (1) UAR-PF for lag-adaptive, uncertainty-aware goal retargeting; (2) a pluggable retargeting interface; and (3) a reproducible Shift x Lag benchmark with evaluation on pick, push, stacking, and peg insertion.
翻译:暂无翻译