In lexicalist linguistic theories, argument structure is assumed to be predictable from the meaning of verbs. As a result, the verb is the primary determinant of the meaning of a clause. In contrast, construction grammarians propose that argument structure is encoded in constructions (or form-meaning pairs) that are distinct from verbs. Decades of psycholinguistic research have produced substantial empirical evidence in favor of the construction view. Here we adapt several psycholinguistic studies to probe for the existence of argument structure constructions (ASCs) in Transformer-based language models (LMs). First, using a sentence sorting experiment, we find that sentences sharing the same construction are closer in embedding space than sentences sharing the same verb. Furthermore, LMs increasingly prefer grouping by construction with more input data, mirroring the behaviour of non-native language learners. Second, in a "Jabberwocky" priming-based experiment, we find that LMs associate ASCs with meaning, even in semantically nonsensical sentences. Our work offers the first evidence for ASCs in LMs and highlights the potential to devise novel probing methods grounded in psycholinguistic research.


翻译:在词汇学语言学理论中,根据动词的含义,理论结构被认为是可以预测的。因此,动词是条款含义的主要决定因素。相反,建筑语法学家认为,在与动词截然不同的建筑(或形式含义对对)中,参数结构被编码为与动词截然不同的建筑(或形式含义对对)中的参数结构。十年的心理语言学研究产生了大量经验证据,有利于构建观点。在这里,我们调整了若干精神语言学研究,以探究在基于变异语言模型(LMS)中是否存在参数结构结构(ASCs)的问题。首先,我们用一个句子分类实验,我们发现在嵌入空间方面,使用相同结构的句子比共用同一动词的句子更加接近。此外,LMS越来越倾向于用更多的输入数据将参数组合成一组。第二,在“Jabelwocky”的边缘实验中,我们发现LMS将ASC与含义相联系,甚至在语义上的非感官性句中。我们的工作为ASCstical 研究提供了初步研究提供的证据。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Summarization with Graphical Elements
Arxiv
0+阅读 · 2022年4月15日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员