Solving evolutionary equations in a parallel-in-time manner is an attractive topic and many algorithms are proposed in recent two decades. The algorithm based on the block $\alpha$-circulant preconditioning technique has shown promising advantages, especially for wave propagation problems. By fast Fourier transform for factorizing the involved circulant matrices, the preconditioned iteration can be computed efficiently via the so-called diagonalization technique, which yields a direct parallel implementation across all time levels. In recent years, considerable efforts have been devoted to exploring the convergence of the preconditioned iteration by studying the spectral radius of the iteration matrix, and this leads to many case-by-case studies depending on the used time-integrator. In this paper, we propose a unified convergence analysis for the algorithm applied to $u'+Au=f$, where $\sigma(A)\subset\mathbb{C}^+$ with $\sigma(A)$ being the spectrum of $A\in\mathbb{C}^{m\times m}$. For any one-step method (such as the Runge-Kutta methods) with stability function $\mathcal{R}(z)$, we prove that the decay rate of the global error is bounded by $\alpha/(1-\alpha)$, provided the method is stable, i.e., $\max_{\lambda\in\sigma(A)}|\mathcal{R}(\Delta t\lambda)|\leq1$. For any linear multistep method, such a bound becomes $c\alpha/(1-c\alpha)$, where $c\geq1$ is a constant specified by the multistep method itself. Our proof only relies on the stability of the time-integrator and the estimate is independent of the step size $\Delta t$ and the spectrum $\sigma(A)$.
翻译:以平行时间方式解析进化方程式是一个有吸引力的专题, 近二十年来提出了许多算法。 基于块 $\ alpha$- circurant 先决条件技术的算法显示了有希望的优势, 特别是对于波的传播问题。 通过快速 Fourier 变换, 将所涉环流矩阵因素化, 先决条件的迭代可以通过所谓的二进制技术来有效计算, 在所有时间级别上产生直接平行执行。 近年来, 已经投入了相当的精力, 通过研究 Exeration 矩阵的频谱半径来探索预设的迭代值的趋同( A\ a) a\ laphal$. (A) a\ a\ a\ a\ a\ a\ a\ a\ a\ a\ a\ creqal_ dal_ dal_ dal_ data_ dreate_ a. a- legal_ a- legal_ a- legal_ legal_ a- legy a- legnal- legal- legy a- legal- rmal le- le- a- rmaxnal_ a- le- legy a- r- le a- legy a- r- leg- legal- r- lemental- r- lemental- legal- legal_ legy_ legy_ legy lemental- a- lemental- a- lemental_ a- legy_ leg- lemental- legy_ leg- legy_ r- a- le- le- r- r- le- le- le- le- legal- legal- legal- lemental- a- r- a- a- a- legal- a- r- led- r- r- led- legal- led- a- a- a- le- le- a- le-