Stability is an important property of graph neural networks (GNNs) which explains their success in many problems of practical interest. Existing GNN stability results depend on the size of the graph, restricting applicability to graphs of moderate size. To understand the stability properties of GNNs on large graphs, we consider neural networks supported on manifolds. These are defined in terms of manifold diffusions mediated by the Laplace-Beltrami (LB) operator and are interpreted as limits of GNNs running on graphs of growing size. We define manifold deformations and show that they lead to perturbations of the manifold's LB operator that consist of an absolute and a relative perturbation term. We then define filters that split the infinite dimensional spectrum of the LB operator in finite partitions, and prove that manifold neural networks (MNNs) with these filters are stable to both, absolute and relative perturbations of the LB operator. Stability results are illustrated numerically in resource allocation problems in wireless networks.


翻译:稳定性是图形神经网络的重要属性,它解释其在许多实际问题中的成功。现有的GNN稳定性结果取决于图形的大小,限制对中小图的可适用性。为了理解大图中GNNs的稳定性特性,我们认为神经网络支持于多个元体。这些神经网络的定义是由Laplace-Beltrami(LB)操作员调解的多重扩散,并被解释为在不断增大的图形上运行的GNNs的极限。我们定义了多重变形,并表明它们导致由绝对和相对扰动术语组成的MutoLB操作员的LB操作员受到干扰。我们随后定义过滤器,将LB操作员在有限分区中的无限维谱进行分割,并证明带有这些过滤器的多重神经网络(MNN)稳定于LB操作员的绝对和相对扰动。稳定的结果在无线网络的资源分配问题中以数字表示。

0
下载
关闭预览

相关内容

【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
7+阅读 · 2021年5月13日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
13+阅读 · 2021年5月25日
Arxiv
7+阅读 · 2021年5月13日
Arxiv
24+阅读 · 2018年10月24日
Top
微信扫码咨询专知VIP会员