Batch codes are a useful notion of locality for error correcting codes, originally introduced in the context of distributed storage and cryptography. Many constructions of batch codes have been given, but few lower bound (limitation) results are known, leaving gaps between the best known constructions and best known lower bounds. Towards determining the optimal redundancy of batch codes, we prove a new lower bound on the redundancy of batch codes. Specifically, we study (primitive, multiset) linear batch codes that systematically encode $n$ information symbols into $N$ codeword symbols, with the requirement that any multiset of $k$ symbol requests can be obtained in disjoint ways. We show that such batch codes need $\Omega(\sqrt{Nk})$ symbols of redundancy, improving on the previous best lower bounds of $\Omega(\sqrt{N}+k)$ at all $k=n^\varepsilon$ with $\varepsilon\in(0,1)$. Our proof follows from analyzing the dimension of the order-$O(k)$ tensor of the batch code's dual code.


翻译:批量代码是误差校正代码的有用地点概念, 最初是在分布式存储和加密背景下引入的。 许多批量代码的构建都给出了较低约束( 限制), 但鲜有已知的下限( 限制) 结果, 在最已知的工程和最已知的下限之间留下空白 。 为了确定批量代码的最佳冗余, 我们证明对批量代码的冗余有一个新的更低约束 。 具体地说, 我们研究( 原始的、 多设置的) 线性批量代码, 将 $n 的信息符号系统编码为 $n 的编码符号, 并且要求以脱节的方式获得 $k 的多套符号请求。 我们显示, 这些批量代码需要$\ Omega (\ sqrt{Nk}) 的冗余符号, 改进了此前的$\\\\ rqrt{N ⁇ k$ 的下限。 。 具体而言, 我们研究( ) $\ varepsilon\ in $ $ 。 我们的证据来自分析批次代码的O (k) $ sunor) under codedededede 的大小。

0
下载
关闭预览

相关内容

在数学中,多重集是对集的概念的修改,与集不同,集对每个元素允许多个实例。 为每个元素提供的实例的正整数个数称为该元素在多重集中的多重性。 结果存在无限多个多重集,它们仅包含元素a和b,但因元素的多样性而变化:(1)集{a,b}仅包含元素a和b,当将{a,b}视为多集时,每个元素的多重性为1;(2)在多重集{a,a,b}中,元素a具有多重性2,而b具有多重性1;(3)在多集{a,a,a,b,b,b}中,a和b都具有多重性3。
专知会员服务
118+阅读 · 2020年7月22日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月29日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员