Batch codes are a useful notion of locality for error correcting codes, originally introduced in the context of distributed storage and cryptography. Many constructions of batch codes have been given, but few lower bound (limitation) results are known, leaving gaps between the best known constructions and best known lower bounds. Towards determining the optimal redundancy of batch codes, we prove a new lower bound on the redundancy of batch codes. Specifically, we study (primitive, multiset) linear batch codes that systematically encode $n$ information symbols into $N$ codeword symbols, with the requirement that any multiset of $k$ symbol requests can be obtained in disjoint ways. We show that such batch codes need $\Omega(\sqrt{Nk})$ symbols of redundancy, improving on the previous best lower bounds of $\Omega(\sqrt{N}+k)$ at all $k=n^\varepsilon$ with $\varepsilon\in(0,1)$. Our proof follows from analyzing the dimension of the order-$O(k)$ tensor of the batch code's dual code.
翻译:批量代码是误差校正代码的有用地点概念, 最初是在分布式存储和加密背景下引入的。 许多批量代码的构建都给出了较低约束( 限制), 但鲜有已知的下限( 限制) 结果, 在最已知的工程和最已知的下限之间留下空白 。 为了确定批量代码的最佳冗余, 我们证明对批量代码的冗余有一个新的更低约束 。 具体地说, 我们研究( 原始的、 多设置的) 线性批量代码, 将 $n 的信息符号系统编码为 $n 的编码符号, 并且要求以脱节的方式获得 $k 的多套符号请求。 我们显示, 这些批量代码需要$\ Omega (\ sqrt{Nk}) 的冗余符号, 改进了此前的$\\\\ rqrt{N ⁇ k$ 的下限。 。 具体而言, 我们研究( ) $\ varepsilon\ in $ $ 。 我们的证据来自分析批次代码的O (k) $ sunor) under codedededede 的大小。