An accurate, physically-based model of soft robots can unlock downstream applications in optimal control. The Finite Element Method (FEM) is an expressive approach for modeling highly deformable structures such as dynamic, elastomeric soft robots. Recently, Projective Dynamics (PD) has been proposed as a fast FEM; however, PD lacks rigorous benchmarking against reality. In this paper, we compare virtual robot models simulated using PD with measurements from their physical counterparts. In particular, we examine several soft structures with different morphologies: a clamped beam under external force, a pneumatically actuated soft robotic arm, and a soft robotic fish tail. We benchmark and analyze different meshing resolutions and elements (tetrahedra and hexahedra), numerical damping, and the differentiability of PD through a differentiable solution (DiffPD). We also advance PD in application to soft robotics by proposing a predictive model for pneumatic soft robot actuation. Through our case-studies, we provide strategies and algorithms for matching real-world physics in simulation, making PD useful for soft robots.
翻译:软机器人的精确、物理模型可以在最佳控制下解锁下游应用。 有限元素法(FEM)是模拟高度变形结构( 如动态、 弹性软机器人)的一种直观方法。 最近, 投影动态( PD) 被提议为快速FEM; 但是, PD 缺乏针对现实的严格基准。 在本文中, 我们比较了使用 PD 模拟的虚拟机器人模型和来自物理对等的测量数据。 特别是, 我们检查了几种具有不同形态的软结构: 外部力量下的紧固梁、 气动软机器人臂、 软机器人尾部。 我们测量并分析了不同的网形分辨率和元素( trahedra 和 exexhedra ) 、 数字悬界和 PD 通过不同解决方案( DiffPDD ) 的不同性。 我们还在软机器人应用PD 时, 提出一个用于充气软机器人激活的预测模型。 我们通过案例研究, 提供了在模拟中匹配真实世界物理学的策略和算法, 使 PD 用于软机器人 。