Monocular SLAM in deformable scenes will open the way to multiple medical applications like computer-assisted navigation in endoscopy, automatic drug delivery or autonomous robotic surgery. In this paper we propose a novel method to simultaneously track the camera pose and the 3D scene deformation, without any assumption about environment topology or shape. The method uses an illumination-invariant photometric method to track image features and estimates camera motion and deformation combining reprojection error with spatial and temporal regularization of deformations. Our results in simulated colonoscopies show the method's accuracy and robustness in complex scenes under increasing levels of deformation. Our qualitative results in human colonoscopies from Endomapper dataset show that the method is able to successfully cope with the challenges of real endoscopies: deformations, low texture and strong illumination changes. We also compare with previous tracking methods in simpler scenarios from Hamlyn dataset where we obtain competitive performance, without needing any topological assumption.
翻译:在变形场景中,单体SLAM将打开通往多种医疗应用的通道,例如计算机辅助导航在内镜检查、自动药物交付或自主机器人手术中的导航。在本文中,我们提议了一种新颖的方法,在不对环境地形或形状作出任何假设的情况下,同时跟踪相机的外形和三维场景变形。该方法使用一种光化异光度光度方法来跟踪图像特征,估计相机的动向和变形,结合对变形的空间和时间的调整。我们在模拟结肠镜中的结果显示这种方法在变形程度不断升高的复杂场景中的准确性和稳健性。我们从安地默普数据集获得的人类结肠镜质量结果显示,该方法能够成功地应对真实端镜的挑战:变形、低质和强烈的光化变化。我们还比较了哈姆林数据集的较简单情况下以前的跟踪方法,在那里我们获得了竞争性的性能,而不需要任何表层假设。