We introduce the first metric for evaluating disentanglement at individual hierarchy levels of a structured latent representation. Applied to object-centric generative models, this offers a systematic, unified approach to evaluating (i) object separation between latent slots (ii) disentanglement of object properties inside individual slots (iii) disentanglement of intrinsic and extrinsic object properties. We theoretically show that for structured representations, our framework gives stronger guarantees of selecting a good model than previous disentanglement metrics. Experimentally, we demonstrate that viewing object compositionality as a disentanglement problem addresses several issues with prior visual metrics of object separation. As a core technical component, we present the first representation probing algorithm handling slot permutation invariance.
翻译:我们引入了第一个衡量标准,用于评估各个层次层次结构化潜在代表结构的分解情况。在以物体为中心的基因模型中,我们应用了第一个衡量标准来评估结构化潜在潜在代表结构的分解情况。这提供了一个系统、统一的方法来评估(一) 潜在位置之间的物体分离情况(二) 单个位置内物体属性的分解情况(三) 内在和外部物体属性的分解情况(三) 结构化情况(三) 我们从理论上表明,对于结构化表现而言,我们的框架比以往的分解指标更能保证选择好的模型。我们实验性地表明,将物体的构成情况视为一种分解问题,可以解决几个问题,先用视觉指标来衡量物体分离情况。我们作为核心技术组成部分,我们介绍了第一个代表算法处理变异情况的方法。