Motivated by the problem of compressing point sets into as few bits as possible while maintaining information about approximate distances between points, we construct random nonlinear maps $\varphi_\ell$ that compress point sets in the following way. For a point set $S$, the map $\varphi_\ell:\mathbb{R}^d \to N^{-1/2}\{-1,1\}^N$ has the property that storing $\varphi_\ell(S)$ (a \emph{sketch} of $S$) allows one to report pairwise squared distances between points in $S$ up to some multiplicative $(1\pm \epsilon)$ error with high probability as long as the minimum distance is not too small compared to $\epsilon$. The maps $\varphi_\ell$ are the $\ell$-fold composition of a certain type of random feature mapping. Moreover, we determine how large $N$ needs to be as a function of $\epsilon$ and other parameters of the point set. Compared to existing techniques, our maps offer several advantages. The standard method for compressing point sets by random mappings relies on the Johnson-Lindenstrauss lemma which implies that if a set of $n$ points is mapped by a Gaussian random matrix to $\mathbb{R}^k$ with $k =\Theta(\epsilon^{-2}\log n)$, then pairwise distances between points are preserved up to a multiplicative $(1\pm \epsilon)$ error with high probability. The main advantage of our maps $\varphi_\ell$ over random linear maps is that ours map point sets directly into the discrete cube $N^{-1/2}\{-1,1\}^N$ and so there is no additional step needed to convert the sketch to bits. For some range of parameters, our maps $\varphi_\ell$ produce sketches which require fewer bits of storage space.
翻译:暂无翻译