In this paper, we propose a multiphysics finite element method for a nonlinear poroelasticity model. To better describe the processes of deformation and diffusion, we firstly reformulate the nonlinear fluid-solid coupling problem into a fluid-fluid coupling problem by a multiphysics approach. Then we design a fully discrete time-stepping scheme to use multiphysics finite element method with $P_2-P_1-P_1$ element pairs for the space variables and backward Euler method for the time variable, and we adopt the Newton iterative method to deal with the nonlinear term. Also, we derive the discrete energy laws and the optimal convergence order error estimates without any assumption on the nonlinear stress-strain relation. Finally, we show some numerical examples to verify the rationality of theoretical analysis and there is no "locking phenomenon".
翻译:在本文中, 我们为非线性粒子弹性模型提出一个多物理有限元素方法。 为了更好地描述变形和扩散过程, 我们首先将非线性液- 固结问题通过多物理学方法重新配置为流流体- 流体混合问题。 然后我们设计一个完全离散的时间步骤方案, 用$P_ 2- P_ 1- P_ 1美元元素对空间变量和时变值落后电极方法使用多物理有限元素方法。 我们采用了牛顿迭接法来处理非线性术语。 此外, 我们得出离散能源法和最佳汇合顺序误差估计, 而不假定非线性压力紧张关系。 最后, 我们展示了一些数字例子来验证理论分析的合理性, 没有“ 锁定现象 ” 。