To facilitate the development of new models to bridge the gap between machine and human social intelligence, the recently proposed Baby Intuitions Benchmark (arXiv:2102.11938) provides a suite of tasks designed to evaluate commonsense reasoning about agents' goals and actions that even young infants exhibit. Here we present a principled Bayesian solution to this benchmark, based on a hierarchically Bayesian Theory of Mind (HBToM). By including hierarchical priors on agent goals and dispositions, inference over our HBToM model enables few-shot learning of the efficiency and preferences of an agent, which can then be used in commonsense plausibility judgements about subsequent agent behavior. This approach achieves near-perfect accuracy on most benchmark tasks, outperforming deep learning and imitation learning baselines while producing interpretable human-like inferences, demonstrating the advantages of structured Bayesian models of human social cognition.
翻译:为促进开发弥合机器与人类社会智能之间差距的新模式,最近提出的《婴儿实验基准》(arXiv:2102.11938)提供了一套任务,旨在评价关于代理人的目标和行动的常识推理,即使是年幼婴儿也展示了这些目标和行动。在这里,我们根据一种等级分级的贝叶斯思想理论(HBToM)对这一基准提出了一个有原则的巴伊西亚解决方案。通过纳入关于代理人目标和处置的等级前科,推断我们的HBToM模型,能够对代理人的效率和偏好进行几分了解,然后用于对代理人随后行为的常识性判断。这种方法在大多数基准任务上达到了近乎完美的准确性,在产生可解释的人类类似推论的同时,超越了深度学习和模仿学习基线,展示了有结构的巴伊斯人社会认知模型的优势。