The success of deep learning in natural language processing raises intriguing questions about the nature of linguistic meaning and ways in which it can be processed by natural and artificial systems. One such question has to do with subword segmentation algorithms widely employed in language modeling, machine translation, and other tasks since 2016. These algorithms often cut words into semantically opaque pieces, such as 'period', 'on', 't', and 'ist' in 'period|on|t|ist'. The system then represents the resulting segments in a dense vector space, which is expected to model grammatical relations among them. This representation may in turn be used to map 'period|on|t|ist' (English) to 'par|od|ont|iste' (French). Thus, instead of being modeled at the lexical level, translation is reformulated more generally as the task of learning the best bilingual mapping between the sequences of subword segments of two languages; and sometimes even between pure character sequences: 'p|e|r|i|o|d|o|n|t|i|s|t' $\rightarrow$ 'p|a|r|o|d|o|n|t|i|s|t|e'. Such subword segmentations and alignments are at work in highly efficient end-to-end machine translation systems, despite their allegedly opaque nature. The computational value of such processes is unquestionable. But do they have any linguistic or philosophical plausibility? I attempt to cast light on this question by reviewing the relevant details of the subword segmentation algorithms and by relating them to important philosophical and linguistic debates, in the spirit of making artificial intelligence more transparent and explainable.


翻译:在自然语言处理中深层学习的成功引起了对语言意义的性质和语言语言语言和人工系统处理方式的强烈矢量空间中产生的部分的疑问。 其中一个问题是2016年以来在语言建模、机器翻译和其他任务中广泛使用的子字分割算法。 因此,这些算法往往将单词切入语义不透明部分, 如“ 周期”、“ 上 ” 、 “ t ” 和“ 周期 ” 中的“ 文字 ” 。 系统随后代表着一个密集的矢量空间中由此产生的部分, 该矢量空间预计将在它们之间建模语言关系。 这个表达方式可能转而被用于绘制“ 周期 on\ t” 和“ 语言建模 ” 。 因此, 这些算法不是建模的, 而是更普遍的重塑, 学习两种语言子组序列之间最佳的双语绘图; 有时甚至纯性字符序列之间, 它们以 透明 lider_ o\ o\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

机器翻译(Machine Translation)涵盖计算语言学和语言工程的所有分支,包含多语言方面。特色论文涵盖理论,描述或计算方面的任何下列主题:双语和多语语料库的编写和使用,计算机辅助语言教学,非罗马字符集的计算含义,连接主义翻译方法,对比语言学等。 官网地址:http://dblp.uni-trier.de/db/journals/mt/
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月8日
Arxiv
0+阅读 · 2022年11月7日
Arxiv
35+阅读 · 2021年8月2日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员