GMRES is a popular Krylov subspace method for solving linear systems of equations involving a general non-Hermitian coefficient matrix. The conventional bounds on GMRES convergence involve polynomial approximation problems in the complex plane. Three popular approaches pose this approximation problem on the spectrum, the field of values, or pseudospectra of the coefficient matrix. We analyze and compare these bounds, illustrating with six examples the success and failure of each. When the matrix departs from normality due only to a low-dimensional invariant subspace, we discuss how these bounds can be adapted to exploit this structure. Since the Arnoldi process that underpins GMRES provides approximations to the pseudospectra, one can estimate the GMRES convergence bounds as an iteration proceeds.
翻译:GMRES是一种流行的Krylov子空间方法,用于解决直线方程系统,其中涉及一般的非赫米提系数矩阵。GMRES趋同的传统界限涉及复杂平面的多元近似问题。三种流行的方法在频谱、数值领域或系数矩阵的假相方面提出了这种近似问题。我们用六个例子分析和比较这些界限,说明每个界限的成败。当矩阵仅仅由于低维的细微空间而偏离正常状态时,我们讨论这些界限如何适应这一结构。由于作为GMRES基础的Arnodi进程提供了假相近点,我们可以将GMRES趋同的界限作为循环过程来估计。