Regular convergence, together with various other types of convergence, has been studied since the 1970s for the discrete approximations of linear operators. In this paper, we consider the eigenvalue approximation of compact operators whose spectral problem can be written as the eigenvalue problem of some holomophic Fredholm operator function. Focusing on the finite element methods (conforming, discontinuous Galerkin, etc.), we show that the regular convergence of discrete holomorphic operator functions follows from the approximation property of the finite element spaces and the compact convergence of the discrete operators in some suitable Sobolev space. The convergence for eigenvalues is then obtained using the discrete approximation theory for the eigenvalue problems of holomorphic Fredholm operator functions. The result can be used to show the convergence of various finite element methods for eigenvalue problems such as the Dirhcilet eigenvalue problem and the biharmonic eigenvalue problem.
翻译:自1970年代以来,对线性操作员离散近似值的定期趋同和各种其他趋同进行了研究。在本文中,我们认为,光谱问题可以写作为某些Holomophic Fredholm 操作员功能的光值问题的紧凑操作员的光值近似值近似值问题。我们注重有限元素方法(相配、不连续的Galerkin等),我们表明,离散的全息性操作员功能的经常趋同性与有限元素空间的近近近属性和离散操作员在某些合适的Sobolev空间的紧凑性趋同性有关。然后利用离散近似近似理论获得对易德雷德霍姆操作员功能的光值问题的趋同性近性接近性近度。结果可以用来显示诸如Dirhcilet egenvalue 问题和双相正调性半值问题等各种限制要素方法的趋同性。