Personalized diffusion models (PDMs) have become prominent for adapting pretrained text-to-image models to generate images of specific subjects using minimal training data. However, PDMs are susceptible to minor adversarial perturbations, leading to significant degradation when fine-tuned on corrupted datasets. These vulnerabilities are exploited to create protective perturbations that prevent unauthorized image generation. Existing purification methods attempt to mitigate this issue but often over-purify images, resulting in information loss. In this work, we conduct an in-depth analysis of the fine-tuning process of PDMs through the lens of shortcut learning. We hypothesize and empirically demonstrate that adversarial perturbations induce a latent-space misalignment between images and their text prompts in the CLIP embedding space. This misalignment causes the model to erroneously associate noisy patterns with unique identifiers during fine-tuning, resulting in poor generalization. Based on these insights, we propose a systematic defense framework that includes data purification and contrastive decoupling learning. We first employ off-the-shelf image restoration techniques to realign images with their original semantic meanings in latent space. Then, we introduce contrastive decoupling learning with noise tokens to decouple the learning of personalized concepts from spurious noise patterns. Our study not only uncovers fundamental shortcut learning vulnerabilities in PDMs but also provides a comprehensive evaluation framework for developing stronger protection. Our extensive evaluation demonstrates its superiority over existing purification methods and stronger robustness against adaptive perturbation.
翻译:暂无翻译