Spoken language models (SLMs) that integrate speech with large language models (LMs) rely on modality adapters (MAs) to map the output of speech encoders to a representation that is understandable to the decoder LM. Yet we know very little about how these crucial MAs transform representations. Here we examine the MA output representation in three SLMs (SALMONN, Qwen2-Audio and Phi-4-Multimodal-Instruct). By finding the nearest decoder LM token to an MA representation, we uncover two strategies for MA representations. For models using a Whisper encoder, MAs appear to represent the meaning of the input using an English-based interlingua, allowing them to handle languages unseen in instruction tuning. For models that don't, like Phi-4-Multimodal-Instruct, MAs instead represent the phonetics of the input, but expressed with English words. We hypothesise that which arises depends on whether the speech encoder is trained only for speech recognition or also for translation.
翻译:暂无翻译