We propose finite-volume schemes for the Cahn-Hilliard equation that unconditionally and discretely satisfy the boundedness of the phase field and the free-energy dissipation. Our numerical framework is applicable to a variety of free-energy potentials including the Ginzburg-Landau and Flory-Huggins, general wetting boundary conditions and degenerate mobilities. Its central thrust is the finite-volume upwind methodology, which we combine with a semi-implicit formulation based on the classical convex-splitting approach for the free-energy terms. Extension to an arbitrary number of dimensions is straightforward thanks to their cost-saving dimensional-splitting nature, which allows to efficiently solve higher-dimensional simulations with a simple parallelization. The numerical schemes are validated and tested in a variety of prototypical configurations with different numbers of dimensions and a rich variety of contact angles between droplets and substrates.


翻译:我们为Cahn-Hilliard等式提出了数量有限的计划,这种计划无条件和独立地满足了阶段字段和自由能源分散的界限。我们的数字框架适用于各种自由能源潜力,包括Ginzburg-Landau和Flory-Huggins,一般的湿边界条件和退化的暴动。其中心是有限量的上风方法,我们结合了基于传统的自由能源条件的锥形分解法的半暗式配方。将任意的多个维度扩展为直截了当的,因为其节省成本的维度分离性质使得能够以简单平行的方式有效地解决高维的模拟。数字方法在各种具有不同维度和滴子体之间多种接触角度的原型配置中进行验证和测试。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员