Internal interfaces in a domain could exist as a material defect or they can appear due to propagations of cracks. Discretization of such geometries and solution of the contact problem on the internal interfaces can be computationally challenging. We employ an unfitted Finite Element (FE) framework for the discretization of the domains and develop a tailored, globally convergent, and efficient multigrid method for solving contact problems on the internal interfaces. In the unfitted FE methods, structured background meshes are used and only the underlying finite element space has to be modified to incorporate the discontinuities. The non-penetration conditions on the embedded interfaces of the domains are discretized using the method of Lagrange multipliers. We reformulate the arising variational inequality problem as a quadratic minimization problem with linear inequality constraints. Our multigrid method can solve such problems by employing a tailored multilevel hierarchy of the FE spaces and a novel approach for tackling the discretized non-penetration conditions. We employ pseudo-$L^2$ projection-based transfer operators to construct a hierarchy of nested FE spaces from the hierarchy of non-nested meshes. The essential component of our multigrid method is a technique that decouples the linear constraints using an orthogonal transformation of the basis. The decoupled constraints are handled by a modified variant of the projected Gauss-Seidel method, which we employ as a smoother in the multigrid method. These components of the multigrid method allow us to enforce linear constraints locally and ensure the global convergence of our method. We will demonstrate the robustness, efficiency, and level independent convergence property of the proposed method for Signorini's problem and two-body contact problems.


翻译:域内的内部界面可能存在物质缺陷, 或可能由于裂缝的传播而出现。 内部界面中这类地缘的分解和接触问题的解决方案在计算上可能具有挑战性。 我们使用一个不合适的有限元素(FE)框架来将域分解, 并开发一个定制的、 全球趋同的、 高效的多格化方法来解决内部界面中的接触问题。 在不合适的 FE 方法中, 使用了结构化的背景胶片, 并且只有基底的平流空间才能被包含不连续性。 域内嵌的界面中的不渗透性条件和接触问题的解决方案可能会在计算上具有挑战性。 使用 Lagrange 乘数法的方法, 将产生的变异性不平等问题重新定位为有线性最小化的最小化问题。 我们的多格化方法可以使用定制的多层结构结构, 解决离析不透析的非渗透性条件。 我们使用伪值的投影传输操作器确保构建一个嵌入的FE空间的等级, 并且使用不固定的内嵌式的内置的内置的内脏的内置系统, 将显示我们不精度的精度的精度的方法 。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
大数据的分布式算法
待字闺中
3+阅读 · 2017年6月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
大数据的分布式算法
待字闺中
3+阅读 · 2017年6月13日
Top
微信扫码咨询专知VIP会员