A high-order finite element method is proposed to solve the nonlinear convection-diffusion equation on a time-varying domain whose boundary is implicitly driven by the solution of the equation. The method is semi-implicit in the sense that the boundary is traced explicitly with a high-order surface-tracking algorithm, while the convection-diffusion equation is solved implicitly with high-order backward differentiation formulas and fictitious-domain finite element methods. By two numerical experiments for severely deforming domains, we show that optimal convergence orders are obtained in energy norm for third-order and fourth-order methods.


翻译:提议采用高阶有限要素法,在一个时间分配域内解决非线性对流-扩散方程式,其边界由等式的解决方案暗含驱动,该方法半隐含,即边界以高阶地面跟踪算法明确追踪,而对流-扩散方程式则以高阶后向分化公式和虚构-内向有限要素法间接解决。通过两次对严重变形区域进行数字实验,我们显示,第三阶和第四阶方法的能源规范中获得了最佳汇合单。

0
下载
关闭预览

相关内容

专知会员服务
35+阅读 · 2021年8月13日
最新《经济学中的强化学习》2020大综述,42页pdf128篇文献
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年8月31日
Arxiv
0+阅读 · 2021年8月31日
Arxiv
13+阅读 · 2021年3月29日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员