Graph neural networks have become an important tool for modeling structured data. In many real-world systems, intricate hidden information may exist, e.g., heterogeneity in nodes/edges, static node/edge attributes, and spatiotemporal node/edge features. However, most existing methods only take part of the information into consideration. In this paper, we present the Co-evolved Meta Graph Neural Network (CoMGNN), which applies meta graph attention to heterogeneous graphs with co-evolution of node and edge states. We further propose a spatiotemporal adaption of CoMGNN (ST-CoMGNN) for modeling spatiotemporal patterns on nodes and edges. We conduct experiments on two large-scale real-world datasets. Experimental results show that our models significantly outperform the state-of-the-art methods, demonstrating the effectiveness of encoding diverse information from different aspects.
翻译:图形神经网络已成为结构化数据建模的重要工具。 在许多现实世界系统中,复杂的隐藏信息可能存在, 例如节点/前沿、静点节点/前沿特性以及时空节点/前沿特征的异质性。 然而, 大多数现有方法只考虑部分信息。 在本文中, 我们介绍共同进化的元图神经网络( COMGNN), 将元图关注应用到与节点和边缘状态同时演进的异质图形中。 我们还提议对节点和边缘的混合时空模式( ST- CoMGNN) 进行空间适应性调整。 我们在两个大型真实世界数据集上进行实验。 实验结果显示,我们的模型大大超越了最新的方法, 展示了来自不同方面的各种编码信息的有效性 。