Osteoporosis is a common chronic metabolic bone disease that is often under-diagnosed and under-treated due to the limited access to bone mineral density (BMD) examinations, e.g. via Dual-energy X-ray Absorptiometry (DXA). In this paper, we propose a method to predict BMD from Chest X-ray (CXR), one of the most commonly accessible and low-cost medical imaging examinations. Our method first automatically detects Regions of Interest (ROIs) of local and global bone structures from the CXR. Then a multi-ROI deep model with transformer encoder is developed to exploit both local and global information in the chest X-ray image for accurate BMD estimation. Our method is evaluated on 13719 CXR patient cases with their ground truth BMD scores measured by gold-standard DXA. The model predicted BMD has a strong correlation with the ground truth (Pearson correlation coefficient 0.889 on lumbar 1). When applied for osteoporosis screening, it achieves a high classification performance (AUC 0.963 on lumbar 1). As the first effort in the field using CXR scans to predict the BMD, the proposed algorithm holds strong potential in early osteoporosis screening and public health promotion.
翻译:骨质疏松是一种常见的慢性代谢性骨骼疾病,这种慢性代谢性骨骼疾病往往被诊断不足和治疗不足,原因是骨髓矿物密度检查(BMD)的获取途径有限,例如,通过双能X射线Absorptiotery(DXA)进行。在本文中,我们建议了一种方法,从最常见、最容易获得和成本低的医疗成像检查之一Chest X射线(CXR)中预测BMD(CXR)是一种常见慢性代谢性骨骼疾病。我们的方法首先自动检测到CXRR(ROI)中的地方和全球骨骼结构区域(ROI),然后开发一个带有变压器编码器的多ROI深模型,以便利用胸X射线图像的当地和全球信息进行准确估计。我们的方法是用其地面真象BMD分数对13719 CXR病人进行评价。模型预测,预测BMD与地面真相有密切的关联(Pearson相关系数0.889,在腰栏1上)。 当应用骨质疏松检查时,它达到高的R分类性性表现,然后用CX光学扫描BBRODMDLP,首次工作。