We present a modelling framework for multi-target tracking based on possibility theory and illustrate its ability to account for the general lack of knowledge that the target-tracking practitioner must deal with when working with real data. We also introduce and study variants of the notions of point process and intensity function, which lead to the derivation of an analogue of the probability hypothesis density (PHD) filter. The gains provided by the considered modelling framework in terms of flexibility lead to the loss of some of the abilities that the PHD filter possesses; in particular the estimation of the number of targets by integration of the intensity function. Yet, the proposed recursion displays a number of advantages such as facilitating the introduction of observation-driven birth schemes and the modelling the absence of information on the initial number of targets in the scene. The performance of the proposed approach is demonstrated on simulated data.


翻译:我们提出了一个基于可能性理论的多目标跟踪建模框架,并表明它有能力说明目标跟踪从业者在使用真实数据时必须处理的普遍缺乏知识的问题,我们还引入和研究点过程和强度功能概念的变体,从而得出概率假设密度过滤器的类似数据,经过考虑的建模框架在灵活性方面产生的收益导致PHD过滤器丧失一些能力,特别是通过结合强度功能估计目标数量,然而,拟议的回溯显示一些优势,例如便利采用观察驱动的分娩计划,以及模拟缺乏关于现场最初目标数量的信息,拟议方法的绩效在模拟数据上得到证明。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning to Importance Sample in Primary Sample Space
Arxiv
8+阅读 · 2018年6月19日
Arxiv
3+阅读 · 2018年4月9日
Arxiv
8+阅读 · 2018年3月20日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员