Few-shot object detection has gained significant attention in recent years as it has the potential to greatly reduce the reliance on large amounts of manually annotated bounding boxes. While most existing few-shot object detection literature primarily focuses on bounding box classification by obtaining as discriminative feature embeddings as possible, we emphasize the necessity of handling the lack of intersection-over-union (IoU) variations induced by a biased distribution of novel samples. In this paper, we analyze the IoU imbalance that is caused by the relatively high number of low-quality region proposals, and reveal that it plays a critical role in improving few-shot learning capabilities. The well-known two stage fine-tuning technique causes insufficient quality and quantity of the novel positive samples, which hinders the effective object detection of unseen novel classes. To alleviate this issue, we present a few-shot object detection model with proposal balance refinement, a simple yet effective approach in learning object proposals using an auxiliary sequential bounding box refinement process. This process enables the detector to be optimized on the various IoU scores through additional novel class samples. To fully exploit our sequential stage architecture, we revise the fine-tuning strategy and expose the Region Proposal Network to the novel classes in order to provide increased learning opportunities for the region-of-interest (RoI) classifiers and regressors. Our extensive assessments on PASCAL VOC and COCO demonstrate that our framework substantially outperforms other existing few-shot object detection approaches.


翻译:近些年来,很少见的物体探测工作受到高度重视,因为它有可能大大减少对大量人工附加说明的捆绑箱的依赖。虽然大多数现有的微小物体探测文献主要侧重于通过尽可能获得具有歧视性的嵌入特征,对盒式封装进行约束性分类,但我们强调,必须处理因新样本分布偏差而导致的交叉式跨工会(IoU)变异。在本文件中,我们分析了由于区域低质量建议数量相对较多而导致的IoU失衡,并表明它在提高少发学习能力方面发挥着关键作用。众所周知的两阶段微调技术导致新颖正面样本的质量和数量不足,这妨碍了对隐蔽新类别的有效目标探测。为了缓解这一问题,我们提出了一个带有建议平衡性改进的微粒物体探测模型,这是使用辅助的按顺序捆绑箱改进流程来学习对象提案的一个简单而有效的方法。这个过程使得探测器能够通过更多的新类样本优化各种IoU的得分数。为了充分利用我们的连续阶段结构结构,我们修订了微缩的OC调战略,并将区域级测试框架暴露了我们不断升级的PA-AS-CIAL 网络提供新的区域学习机会。

0
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
【MIT Sam Hopkins】如何读论文?How to Read a Paper
专知会员服务
106+阅读 · 2022年3月20日
专知会员服务
61+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月8日
Arxiv
21+阅读 · 2020年10月11日
Arxiv
12+阅读 · 2019年4月9日
Arxiv
19+阅读 · 2018年5月17日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员