Private data analysis faces a significant challenge known as the curse of dimensionality, leading to increased costs. However, many datasets possess an inherent low-dimensional structure. For instance, during optimization via gradient descent, the gradients frequently reside near a low-dimensional subspace. If the low-dimensional structure could be privately identified using a small amount of points, we could avoid paying (in terms of privacy and accuracy) for the high ambient dimension. On the negative side, Dwork, Talwar, Thakurta, and Zhang (STOC 2014) proved that privately estimating subspaces, in general, requires an amount of points that depends on the dimension. But Singhal and Steinke (NeurIPS 2021) bypassed this limitation by considering points that are i.i.d. samples from a Gaussian distribution whose covariance matrix has a certain eigenvalue gap. Yet, it was still left unclear whether we could provide similar upper bounds without distributional assumptions and whether we could prove lower bounds that depend on similar eigenvalue gaps. In this work, we make progress in both directions. We formulate the problem of private subspace estimation under two different types of singular value gaps of the input data and prove new upper and lower bounds for both types. In particular, our results determine what type of gap is sufficient and necessary for estimating a subspace with an amount of points that is independent of the dimension.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月22日
Arxiv
0+阅读 · 2024年3月20日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
11+阅读 · 2018年5月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年3月22日
Arxiv
0+阅读 · 2024年3月20日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
11+阅读 · 2018年5月21日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员