Functional data describe a wide range of processes encountered in practice, such as growth curves and spectral absorption. Functional regression considers a version of regression, where both the response and covariates are functional data. Evaluating both the functional relatedness between the response and covariates and the relatedness of a multivariate response function can be challenging. In this paper, we propose a solution for both these issues, by means of a functional Gaussian graphical regression model. It extends the notion of conditional Gaussian graphical models to partially separable functions. For inference, we propose a double-penalized estimator. Additionally, we present a novel adaptation of Kullback-Leibler cross-validation tailored for graph estimators which accounts for precision and regression matrices when the population presents one or more sub-groups, named joint Kullback-Leibler cross-validation. Evaluation of model performance is done in terms of Kullback-Leibler divergence and graph recovery power. We illustrate the method on a air pollution dataset.
翻译:暂无翻译