Large Vision-Language Models (LVLMs) demonstrate impressive capabilities in generating detailed and coherent responses from visual inputs. However, they are prone to generate hallucinations due to an over-reliance on language priors. To address this issue, we investigate the language priors in LVLMs and make two key observations: (1) Even when predicting the tokens associated with image-related part-of-speech (POS), models increasingly rely on linguistic priors as the token sequences grow, thereby amplifying hallucinations. (2) Methods that directly calibrate LVLM's output distribution to mitigate language priors can lead to a degradation in text quality or even exacerbate hallucinations. Based on these findings, we propose a novel method, Summary-Guided Decoding (SGD). This method naturally encourages the model to focus more on image information by reducing the text context through summaries, while controlling only the image-related POS tokens to maintain text quality. Through experiments, we demonstrate that SGD achieves state-of-the-art performance on object hallucination benchmarks. Furthermore, in terms of the trade-off between precision and recall, SGD achieves Pareto optimality among the existing methods. Lastly, we observe that although existing methods struggle to balance the reduction of object hallucinations with maintaining text quality, SGD demonstrates robustness in handling this challenge.
翻译:暂无翻译