Learning causal structure from observational data is a fundamental challenge in machine learning. However, the majority of commonly used differentiable causal discovery methods are non-identifiable, turning this problem into a continuous optimization task prone to data biases. In many real-life situations, data is collected from different environments, in which the functional relations remain consistent across environments, while the distribution of additive noises may vary. This paper proposes Differentiable Invariant Causal Discovery (DICD), utilizing the multi-environment information based on a differentiable framework to avoid learning spurious edges and wrong causal directions. Specifically, DICD aims to discover the environment-invariant causation while removing the environment-dependent correlation. We further formulate the constraint that enforces the target structure equation model to maintain optimal across the environments. Theoretical guarantees for the identifiability of proposed DICD are provided under mild conditions with enough environments. Extensive experiments on synthetic and real-world datasets verify that DICD outperforms state-of-the-art causal discovery methods up to 36% in SHD. Our code will be open-sourced.


翻译:观察数据的学习因果结构是机器学习中的一项根本挑战。然而,大多数常用的不同因果发现方法都无法辨别,将这一问题转化为一种持续优化的任务,容易造成数据偏差。在许多现实环境中,数据是从不同环境中收集的,在这种环境中,功能关系在各种环境中保持一致,而添加噪音的分布可能各有不同。本文提议利用基于不同框架的多环境信息,避免学习虚假的边缘和错误的因果方向。具体地说,DICD旨在发现环境-因果性因果关系,同时消除环境依赖性相关关系。我们进一步制定强制实施目标结构方程式模型的制约因素,以保持整个环境的最佳性。提议的DICD的可识别性在环境比较温和的条件下得到理论上的保证。关于合成和真实世界数据集的广泛实验证实,DICD在SHD中超越了36%的状态-因果性发现方法。我们的代码将是开源的。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
241+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月4日
Arxiv
0+阅读 · 2022年11月3日
Arxiv
43+阅读 · 2022年9月19日
Arxiv
109+阅读 · 2020年2月5日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员