We propose an analysis-by-synthesis method for fast multi-view 3D reconstruction of opaque objects with arbitrary materials and illumination. State-of-the-art methods use both neural surface representations and neural rendering. While flexible, neural surface representations are a significant bottleneck in optimization runtime. Instead, we represent surfaces as triangle meshes and build a differentiable rendering pipeline around triangle rasterization and neural shading. The renderer is used in a gradient descent optimization where both a triangle mesh and a neural shader are jointly optimized to reproduce the multi-view images. We evaluate our method on a public 3D reconstruction dataset and show that it can match the reconstruction accuracy of traditional baselines and neural approaches while surpassing them in optimization runtime. Additionally, we investigate the shader and find that it learns an interpretable representation of appearance, enabling applications such as 3D material editing.
翻译:我们建议对具有任意材料和照明的不透明物体进行快速多视三维重建,采用分析的逐项合成方法。 最先进的方法既使用神经表面表象,又使用神经造形。 虽然灵活, 神经表面表象在优化运行时是一个重大的瓶颈。 相反, 我们将表面代表成三角模头, 并围绕三角形光化和神经阴影建立一个不同的管道。 铸造器用于一个梯度下坡优化, 三角网状和神经遮光器共同优化复制多视图像。 我们评估了公共三维重建数据集中我们的方法, 并表明它能够与传统基线和神经方法的重建准确性相匹配, 同时在优化运行时超过它们。 此外, 我们调查遮光镜, 发现它学会了可解释的外观, 使3D材料编辑等应用程序得以应用 。