We present a system for collision-free control of a robot manipulator that uses only RGB views of the world. Perceptual input of a tabletop scene is provided by multiple images of an RGB camera (without depth) that is either handheld or mounted on the robot end effector. A NeRF-like process is used to reconstruct the 3D geometry of the scene, from which the Euclidean full signed distance function (ESDF) is computed. A model predictive control algorithm is then used to control the manipulator to reach a desired pose while avoiding obstacles in the ESDF. We show results on a real dataset collected and annotated in our lab.
翻译:我们提出了一个机器人操纵器不受碰撞控制的系统,它只使用世界的 RGB 视图。 桌面场景的感知输入由一台 RGB 相机的多张图像( 不带深度) 提供, 它要么是手持式的, 要么是安装在机器人末端效果器上。 一个类似 NeRF 的流程用于重建场景的三维几何, 从中计算出 Euclidean 完全签名的远程功能( ESDF ) 。 然后使用模型预测控制算法控制操纵器, 以达到一个理想的姿势, 同时避免在 ESDF 中设置障碍 。 我们在实验室中显示所收集和附加的真数据集的结果 。