Object picking in cluttered scenes is a widely investigated field of robot manipulation, however, ambidextrous robot picking is still an important and challenging issue. We found the fusion of different prehensile actions (grasp and suction) can expand the range of objects that can be picked by robot, and the fusion of prehensile action and nonprehensile action (push) can expand the picking space of ambidextrous robot. In this paper, we propose a Push-Grasp-Suction (PGS) tri-mode grasping learning network for ambidextrous robot picking through the fusion of different prehensile actions and the fusion of prehensile action and nonprehensile aciton. The prehensile branch of PGS takes point clouds as input, and the 6-DoF picking configuration of grasp and suction in cluttered scenes are generated by multi-task point cloud learning. The nonprehensile branch with depth image input generates instance segmentation map and push configuration, cooperating with the prehensile actions to complete the picking of objects out of single-arm space. PGS generalizes well in real scene and achieves state-of-the-art picking performance.
翻译:在乱七八糟的场景中选取物体是一个广泛调查的机器人操纵领域, 然而, 异常的机器人选取仍然是一个重要而具有挑战性的问题。 我们发现, 各种先发制人的行动( grasp and spuction) 的结合可以扩大机器人可以选取的物体范围, 而先发制人的行动和非先发制人的行动( push) 的结合可以扩大杂乱的机器人选取空间。 在本文中, 我们提议建立一个 推- 放大- 抽查( PGS) 的三模组抓取学习网络, 用于通过不同先发制人的行动以及先发制人的行动和无先发制人的行动的结合来取取取精。 PGS 的先发性分支将点云作为输入, 以及 6 - DoF 选取的捕捉摸和抽吸的阵空间空间空间空间空间空间空间的配置由多塔点的云学习产生。 带有深度图像输入的非先发制人的分支生成实例分割图和推动配置, 与先发制人的动作合作, 将精选取的动作动作将一州空间的物体完全选取出来。</s>