We introduce a novel varying-weight dependent Dirichlet process (DDP) model that extends a recently developed semi-parametric generalized linear model (SPGLM) by adding a nonparametric Bayesian prior on the baseline distribution of the GLM. We show that the resulting model takes the form of an inhomogeneous completely random measure that arises from exponential tilting of a normalized completely random measure. Building on familiar posterior sampling methods for mixtures with respect to normalized random measures, we introduce posterior simulation in the resulting model. We validate the proposed methodology through extensive simulation studies and illustrate its application using data from a speech intelligibility study.
翻译:暂无翻译