Despite decades of practice, finite-size errors in many widely used electronic structure theories for periodic systems remain poorly understood. For periodic systems using a general Monkhorst-Pack grid, there has been no rigorous analysis of the finite-size error in the Hartree-Fock theory (HF) and the second order M{\o}ller-Plesset perturbation theory (MP2), which are the simplest wavefunction based method, and the simplest post-Hartree-Fock method, respectively. Such calculations can be viewed as a multi-dimensional integral discretized with certain trapezoidal rules. Due to the Coulomb singularity, the integrand has many points of discontinuity in general, and standard error analysis based on the Euler-Maclaurin formula gives overly pessimistic results. The lack of analytic understanding of finite-size errors also impedes the development of effective finite-size correction schemes. We propose a unified method to obtain sharp convergence rates of finite-size errors for the periodic HF and MP2 theories. Our main technical advancement is a generalization of the result of [Lyness, 1976] for obtaining sharp convergence rates of the trapezoidal rule for a class of non-smooth integrands. Our result is applicable to three-dimensional bulk systems as well as low dimensional systems (such as nanowires and 2D materials). Our unified analysis also allows us to prove the effectiveness of the Madelung-constant correction to the Fock exchange energy, and the effectiveness of a recently proposed staggered mesh method for periodic MP2 calculations [Xing, Li, Lin, 2021]. Our analysis connects the effectiveness of the staggered mesh method with integrands with removable singularities, and suggests a new staggered mesh method for reducing finite-size errors of periodic HF calculations.
翻译:尽管已有数十年的实践,但许多广泛使用的定期系统电子结构理论中的有限误差仍未被很好地理解。对于使用通用 Monkhorst-Pack 网格的定期系统,对Hartree-Fock 理论(高频)中的有限误差没有进行严格的分析,而第二顺序M@o}Liser-Plesset 扰动理论(MP2)则是基于最简单的波控基础方法,以及简单的后Hartree-Fock方法。这些计算可以被视为与某些陷阱化规则分解的多维流化整体化。由于库伦特奇特奇特性,内格特性在总体上具有许多不连续性点,而基于Euler-Maclaurin 公式的标准错误分析则过于悲观。缺乏对定序误差的分析性理解,也阻碍了有效的定序校正校正校正校正校正校正校正的校正方法。我们提出了一套统一的方法,用于定期软缩误率,用于定期高频和MP2理论。我们的主要技术进步是将[正正正正正正正的汇率、制的节正的节制,也使得我们制的节正的节正的节正的节正的节正的节正的节正的节算,使得我们制的节制的节制-节制的节制的节制的节制的节制的节制的节制的节制的节制的节制的节制的节制的节制的节制的节制的节制,也显示的节制,使得的节制的节制,使得我们制,使得我们制的节制的节制,使得我们制的节制的节制的节制的节制的节制的节制的节制,使得的节制的节制的节制的节制,使得的节制的节制的节制,使得的节制的节制的节制的节制的节制的节制的节制的节制的节制的节制的节制的节制,使得的节制的节制的节制的节制的节制,也使得的节制的节制的节制的节制的节制的节制的节制的节制的节制的节制的节制与制