In this paper, we analyze the stability of feedback interconnections of a linear time-invariant system with a neural network nonlinearity in discrete time. Our analysis is based on abstracting neural networks using integral quadratic constraints (IQCs), exploiting the sector-bounded and slope-restricted structure of the underlying activation functions. In contrast to existing approaches, we leverage the full potential of dynamic IQCs to describe the nonlinear activation functions in a less conservative fashion. To be precise, we consider multipliers based on the full-block Yakubovich / circle criterion in combination with acausal Zames-Falb multipliers, leading to linear matrix inequality based stability certificates. Our approach provides a flexible and versatile framework for stability analysis of feedback interconnections with neural network nonlinearities, allowing to trade off computational efficiency and conservatism. Finally, we provide numerical examples that demonstrate the applicability of the proposed framework and the achievable improvements over previous approaches.


翻译:在本文中,我们分析线性时变系统的反馈互联的稳定性,这种系统在离散时间里具有神经网络的无线性;我们的分析基于利用整体二次约束(IQCs)的抽象神经网络,利用受部门约束和斜坡限制的基本激活功能结构;与现有办法不同,我们充分利用动态的IQC的潜力,以较保守的方式描述非线性激活功能;确切地说,我们考虑基于全区Yakubovich/圆形标准的乘数,结合acusal Zames-Falb乘数,形成线性矩阵不平等稳定证书;我们的方法为对与神经网络非线性网络的反馈互联进行稳定分析提供了一个灵活和多功能的框架,从而能够交换计算效率和 Conservatis。最后,我们提供了数字例子,表明拟议框架的适用性以及比以往方法可实现的改进。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
YOLOv4 最强PyTorch复现来了!
CVer
3+阅读 · 2020年7月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
5+阅读 · 2018年11月15日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年11月20日
Arxiv
7+阅读 · 2020年6月29日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
YOLOv4 最强PyTorch复现来了!
CVer
3+阅读 · 2020年7月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
5+阅读 · 2018年11月15日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员