We consider expected risk minimization when the range of the estimator is required to be nonnegative, motivated by the settings of maximum likelihood estimation (MLE) and trajectory optimization. To facilitate nonlinear interpolation, we hypothesize that search is conducted over a Reproducing Kernel Hilbert Space (RKHS). To solve it, we develop first and second-order variants of stochastic mirror descent employing (i) pseudo-gradients and (ii) complexity-reducing projections. Compressive projection in first-order scheme is executed via kernel orthogonal matching pursuit (KOMP), and overcome the fact that the vanilla RKHS parameterization grows unbounded with time. Moreover, pseudo-gradients are needed when stochastic estimates of the gradient of the expected cost are only computable up to some numerical errors, which arise in, e.g., integral approximations. The second-order scheme develops a Hessian inverse approximation via recursively averaged pseudo-gradient outer products. For the first-order scheme, we establish tradeoffs between accuracy of convergence in mean and the projection budget parameter under constant step-size and compression budget are established, as well as non-asymptotic bounds on the model complexity. Analogous convergence results are established for the second-order scheme under an additional eigenvalue decay condition on the Hessian of the optimal RKHS element. Experiments demonstrate favorable performance on inhomogeneous Poisson Process intensity estimation in practice.


翻译:我们认为,如果估计值的范围必须是非负值的,并且受最大可能性估计(MLE)和轨迹优化的设置的驱动,那么预期风险最小化就会是预期的最小值。为了便利非线性内插,我们假设搜索是在复制的Kernel Hilbert空间(RKHS)上进行的。为了解决这个问题,我们开发了一级和二级的随机镜底下降变体,使用(一) 假偏差和(二) 复杂性降低预测。第一阶方案的压缩预测是通过内核或远方匹配(KOMP)执行的,并克服了香草RKHS参数化随时间而增加的事实。此外,在对预期成本梯度的梯度估计只能与某些数字错误相容,而采用(一) 假偏差和(二) 降低复杂性的预测。第二阶方案通过循环平均伪降解外产产品来开发 Hessisian 偏差的双向近值。 对于第一个阶方案而言,我们在平均和连续预算参数步骤下,在平均的递归值中,在平均和稳定预算的递定的递值的递合性递合性结果中,在稳定预算的递定的递合性结果中,在固定预算的递合的递合性结果的递合性结果结果的递合性结果中,在稳定的递合性结果中,这是一个固定预算的递合性结果的递制的递制的递制的递制的递制的递制的递制的递算结果的递算结果结果的递合性结果。

0
下载
关闭预览

相关内容

【NUS-Xavier教授】注意力神经网络,79页ppt
专知会员服务
62+阅读 · 2021年11月25日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
65+阅读 · 2021年6月18日
VIP会员
相关VIP内容
【NUS-Xavier教授】注意力神经网络,79页ppt
专知会员服务
62+阅读 · 2021年11月25日
相关资讯
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员