Typical deep neural network (DNN) backdoor attacks are based on triggers embedded in inputs. Existing imperceptible triggers are computationally expensive or low in attack success. In this paper, we propose a new backdoor trigger, which is easy to generate, imperceptible, and highly effective. The new trigger is a uniformly randomly generated three-dimensional (3D) binary pattern that can be horizontally and/or vertically repeated and mirrored and superposed onto three-channel images for training a backdoored DNN model. Dispersed throughout an image, the new trigger produces weak perturbation to individual pixels, but collectively holds a strong recognizable pattern to train and activate the backdoor of the DNN. We also analytically reveal that the trigger is increasingly effective with the improving resolution of the images. Experiments are conducted using the ResNet-18 and MLP models on the MNIST, CIFAR-10, and BTSR datasets. In terms of imperceptibility, the new trigger outperforms existing triggers, such as BadNets, Trojaned NN, and Hidden Backdoor, by over an order of magnitude. The new trigger achieves an almost 100% attack success rate, only reduces the classification accuracy by less than 0.7%-2.4%, and invalidates the state-of-the-art defense techniques.
翻译:典型的深心神经网络( DNN) 后门攻击基于输入中嵌入的触发器。 现有的无法察觉的触发器在攻击成功率上计算成本昂贵或低。 在本文中, 我们提出一个新的后门触发器, 很容易生成, 无法感知, 并且非常有效。 新的触发器是一个单一随机生成的三维( 3D) 二维模式, 可以横向和/ 垂直重复, 反射并覆盖在三道图像上, 用于训练后门 DNN 模型。 在整个图像中, 新的触发器产生对单个像素较弱的扰动, 但是在培训和激活 DNNN 后门时, 共同持有一种强大的可识别模式。 我们还分析地显示, 触发器随着图像的改善而越来越有效。 实验正在使用MNIST、 CIRF- 10 和 BTSR 数据集的ResNet-18 和 MLP 模型进行实验。 在不易感性方面, 新的触发器超越了现有的触发器, 如 BadNets, Trojand NNN, 和隐藏的后方位定的精确率, 仅由100 和低的触发器的精确度, 级的顺序, 降低了100- breg- brealental- best- best- best- best- brealdaldal- bass- saldalate- passality- disaldaldal- sality) 的顺序, 级, 速度, 速度, 级, 级, 级, 。