We study the connection between discrete Morse theory and persistent homology in the context of shape reconstruction methods. Specifically, we consider the construction of Wrap complexes, introduced by Edelsbrunner as a subcomplex of the Delaunay complex, and the construction of lexicographic optimal homologous cycles, also considered by Cohen-Steiner, Lieutier, and Vuillamy in a similar setting. We show that for any cycle in a Delaunay complex at a given radius parameter, the lexicographically optimal homologous cycle is supported on the Wrap complex for the same parameter, thereby establishing a close connection between the two methods. We obtain this result by establishing a fundamental connection between reduction of cycles in the computation of persistent homology and gradient flows in the algebraic generalization of discrete Morse theory.
翻译:暂无翻译